

Note

Flavonoid glycoside from *Leucas lavandulaefolia* (Rees) aerial parts

K S Chandrashekhar*, B J Arun, D Satyanarayana & E V S Subramanyam

Department of Pharmacognosy, N.G.S.M. Institute of Pharmaceutical Sciences, Nanthoor, Mangalore 575 005, India
E-mail: cksbhat@yahoo.co.in

Received 8 July 2005; accepted (revised) 16 May 2006

Chrysoeriol-4'-*O*- α -L-rhamnopyranosyl (1 \rightarrow 2) β -D-galactopyranosyl (1 \rightarrow 6) β -D-glucopyranoside has been isolated from *Leucas lavandulaefolia* Rees aerial parts and its structure has been determined by UV-Vis, IR, 1 H and 13 C NMR and mass spectroscopic methods.

Keywords: *Leucas lavandulaefolia*, chrysoeriol, takadiastase, β -glucosidase, β -galactosidase

IPC Code: Int. Cl.⁸ A61K

Leucas lavandulaefolia Rees (family Labiate) is a herbaceous annual weed found in pastures and waste land throughout India. It has a strong flavour and is reputed for its use as sedative, vermifuge, stomachic, dermatosis and is also useful in the treatment of migraine¹⁻³. A literature survey revealed that the presence of acacetin and chrysoeriol from this plant has been reported⁴. This note describes the isolation and characterization of a new compound chrysoeriol-4'-*O*- α -L-rhamnopyranosyl (1 \rightarrow 2) β -D-galactopyranosyl (1 \rightarrow 6) β -D-glucopyranoside from aerial part of plant material of this species.

Results and Discussion

The compound was found to be a flavone glycoside by its spectral analysis⁵ and Molisch test. Upon acid hydrolysis (7% H₂SO₄), the compound yielded D-glucose, D-galactose, L-rhamnose and aglycone. The aglycone was characterized as chrysoeriol on the basis of UV-Vis, 1 H and 13 C NMR and co-TLC⁴. When UV-Vis spectrum (NaOMe) was compared with that of chrysoeriol, no shift was observed in band-I indicating the glycosylation site at C₄. The absence of signal by 1 H and 13 C NMR at δ 9-9.42 for C₄-OH in chrysoeriol clearly indicated the glycosylation at C₄.

The aglycone gave the characteristic colour reactions of flavonoid. It was confirmed from the red colour with magnesium and hydrochloric acid (Shinoda test)⁶. The inter sugar configurations were deduced from 1 H and 13 C NMR spectra which confirmed β -D-pyranosyl configuration for glucose and galactose and α -L-pyranosyl configuration for rhamnose. The glycoside completely methylated, was hydrolysed and the resulting methylated sugars were identified as 2,3,4-tri-*O*-methyl-L-glucose, 3,4,6-tri-*O*-methyl-D-galactose and 2,3,4-tri-*O*-methyl-L-rhamnose. Hydrolysis of the glycoside with takadiastase liberated rhamnose. After complete takadiastase hydrolysis, the glycoside was hydrolysed with β -galactosidase and β -glucosidase. The 1 H NMR spectrum of the compound showed three anomeric proton signals at δ 5.45 (1H, d, J = 7.1 Hz) assignable to 1-H- β -glucoside proton, δ 5.57 (1H, d, J = 8 Hz) assignable to 1-H- β -galactosyl proton and δ 5.05 (1H, d, J = 2.0 Hz) assignable to 1-H- α -rhamnopyranosyl proton. The remaining sugar protons resonated between δ 3.33-4.50. CH₃ of rhamnose appeared at δ 1.25 (3H, d, J = 6.0 Hz). The 13 C NMR pattern of the compound matched with the reported values for chrysoeriol⁴. Anomeric carbons of glucose, galactose and rhamnose appeared at δ 101.3, 104.8 and 100.6 respectively. 13 C NMR signals of sugar were similar to their reported values except for a 5.9 ppm downfield shift of C-6" of glucose and 6.8 ppm downfield shift of C-2" of galactose. This downfield shift established 1 \rightarrow 6 linkage between galactose and glucose and a 1 \rightarrow 2 linkage between rhamnose and galactose. Further, the C-4' site of glycoside resonated at higher field (148.66) as compared to C-5 and C-7. Thus C-4' of the glycoside exhibited a shielding effect which confirmed that the attachment of sugars was at C-4' of the glycoside via a C-O-C linkage. Based on these evidences, the structure of the compound was assigned as chrysoeriol-4'-*O*- α -L-rhamnopyranosyl (1 \rightarrow 2) β -D-galactopyranosyl (1 \rightarrow 6) β -D-glucopyranoside (**Figure 1**). The isolation and characterization of this flavonoid glycoside has been reported for the first time.

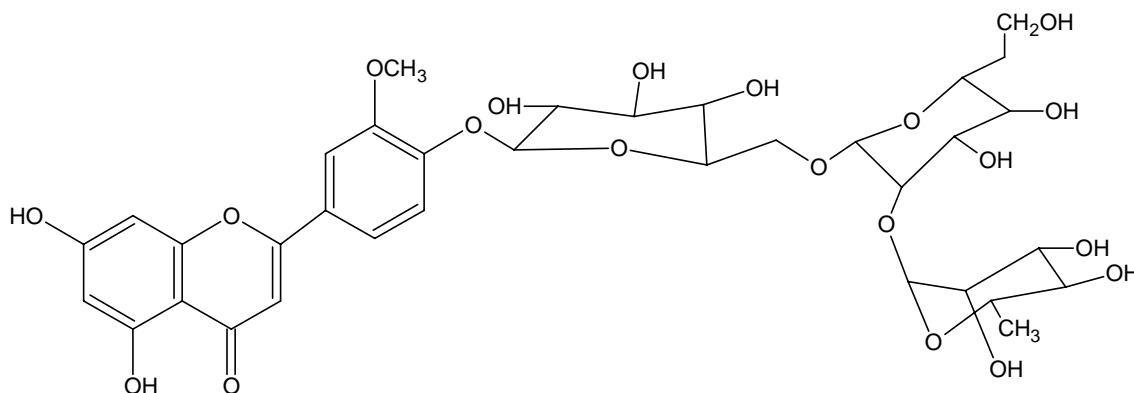


Figure 1

Experimental Section

IR spectra (KBr) were recorded on a Shimadzu 8201 PC FT spectrometer. ^1H NMR spectra were obtained on a Brucker WM 400 instrument at 90.56 MHz in $\text{DMSO}-d_6$ using TMS as an internal standard (chemical shift in δ , ppm). TLC were run on silica gel G (Merck). UV-Vis spectra (MeOH) were obtained on a Hitachi 320 spectrophotometer.

Plant material. The aerial parts (including leaves, flowers, stem and branches) of *L. lavandulaefolia* were collected from Udupi, Karnataka, India and its botanical identity was confirmed by Dr. Gopalkrishna Bhat, Department of Botany, Poornaprajna College, Udupi. A voucher specimen has been deposited in NGSM Institute of Pharmaceutical Sciences, Nanthoor, Mangalore.

Extraction and Isolation. The aerial parts of *L. lavandulaefolia* were collected from Udupi, dried under shade and powdered. 1 kg of dry plant material was defatted with petroleum ether in a soxhlet apparatus. The defatted plant material was extracted with hot EtOH to give a solid residue (10 g) which was extracted with EtOAc. The EtOAc fraction on silica gel column chromatography eluting with EtOAc-MeOH (7:4, v/v) yielded compound 1 (200 mg). The compound was then further purified by preparative TLC on silica gel with the same solvent system to get 175 mg of pure compound 1, m.p. 172–74°C. UV-Vis(nm): (MeOH) 239, 269, 288(sh), 334; (MeOH-NaOMe): 223(sh), 231, 278, 309(sh), 369; (MeOH-AlCl₃): 257(sh), 279, 291(sh), 345, 381; (MeOH-AlCl₃-HCl): 257, 280, 291 (sh), 342, 381; (MeOH-NaOAC): 232, 275, 310, 350; IR(KBr): 1651, 3355, 1208, 1256, 1033, 1103, 3081, 2907 cm^{-1} ; ^1H

NMR ($\text{DMSO}-d_6$): δ 6.54(1H, s, H-3), 3.33–4.50(18H, m, sugar-H), 3.89(3H, s, 1 \times OCH₃), 5.05(1H, d, J = 7.5Hz, rha H-1), 5.57(1H, d, J = 7.5Hz, gal H-1), 5.45(1H, d, J = 7.5Hz, glu H-1), 6.42(1H, d, J = 2.5Hz, H-6), 6.53(1H, d, J = 2.5Hz, H-8), 7.18(1Hd, J = 2.5Hz, H-2'), 7.28(1H, dd, J = 2.5 and 9.5Hz, H-6'), 7.39(1H, d, J = 9.5Hz, H-5'), 13.17(1H, s, OH-5); ^{13}C NMR($\text{DMSO}-d_6$): δ 164.1(C-2), 103.0(C-3), 196.01(C-4), 103.03(C-4a), 163.98(C-5), 97.33(C-6), 163.74(C-7), 106.28(C-8), 166.03(C-8a), 119.44(C-1'), 156.95(C-2'), 98.58(C-3'), 148.66(C-4'), 104.5(C-5'), 126.43(C-6'); glucose 101.3(C-1), 74.3(C-2), 76.7(C-3), 70.2(C-4), 77.2(C-5), 67.8(C-6); galactose 104.8 (C-1), 78.1(C-2), 73.7(C-3), 71.2(C-4), 75.2(C-5), 61.9(C-6); rhamnose 100.6(C-1), 71.8(C-2), 72.2(C-3), 73.7(C-4), 68.1(C-5), 18.1(-CH₃); EIMS: m/z 789[M+H]⁺, 642[M+H-rha], 769[M+H-OMe]⁺.

Acknowledgement

The authors are thankful to Head SAIF/RSIC, CDRI, Lucknow (India) for providing spectral and analytical data and also to Nitte Education Trust for providing laboratory facilities.

References

- Anonymous, *Wealth of India*, Vol VI, (NISC Publishing Co., New Delhi), **1961**, p 79.
- Kirtikar K R & Basu B D, *Indian Medicinal Plants*, 2nd edn, (Periodic Experts Book Agency, New Delhi), **1975**, 2020.
- Nadakarni K M, *Indian Materia Medica*, Vol.1 (Popular Prakashan, Bombay) **1992**, 739.
- Smith J E, *Acta Pharma Indonesia*, **110**, **1985**, 27.
- Harborne J B, Mabry T J & Mabry H, *The Flavonoids* (Chapman and Hall, London), **1975**.
- Shinoda J, *J Chem Pharm Soc Japan*, **48**, **1928**, 214.